Investigation of Hydrodynamically Dominated Membrane Rupture, Using Smoothed Particle Hydrodynamics–Finite Element Method
نویسندگان
چکیده
منابع مشابه
Selective Smoothed Finite Element Method
The paper examines three selective schemes for the smoothed finite element method (SFEM) which was formulated by incorporating a cell-wise strain smoothing operation into the standard compatible finite element method (FEM). These selective SFEM schemes were formulated based on three selective integration FEM schemes with similar properties found between the number of smoothing cells in the SFEM...
متن کاملLiquid–solid flows using smoothed particle hydrodynamics and the discrete element method
Ž . This study presents a computational method combining smoothed particle hydrodynamics SPH and the discrete element method Ž . DEM to model flows containing a viscous fluid and macroscopic solid particles. The two-dimensional numerical simulations are validated by comparing the wake size, drag coefficient and local heat transfer for flow past a circular cylinder at Reynolds numbers near 100. ...
متن کاملSimulation of Cold Rolling Process Using Smoothed Particle Hydrodynamics (SPH)
Regarding the reported capabilities and the simplifications of the smoothed particle hydrodynamics (SPH) method, as a mesh-free technique in numerical simulations of the deformation processes, a 2-D approach on cold rolling process was provided. Using and examining SPH on rolling process not only caused some minor developments on SPH techniques but revealed some physical realities. The chosen t...
متن کاملHomogenization for composite material properties using smoothed finite element method
Numerical homogenization is an efficient way to determine effective material properties of composite materials. Conventionally, the finite element technique has been widely used in implementing the homogenization. However, the standard finite element method (FEM) leads to an overly-stiff model which gives poor accuracy especially using triangular elements in 2D or tetrahedral elements in 3D wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fluids
سال: 2019
ISSN: 2311-5521
DOI: 10.3390/fluids4030149